Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 177: 203-210, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340568

RESUMO

Fish canning industries generate large amounts of solid waste during their processing operations, creating a significant environmental challenge. Nonetheless, this waste can be efficiently and sustainably treated through anaerobic digestion. In this study, the potential of biogas production from anaerobic digestion of thermally pretreated and co-digested solid tuna waste was investigated. The thermal pretreatment of raw fish viscera resulted in a 50 % increase in methane yield, with a production of 0.27 g COD-CH4/g COD added. However, this pretreatment did not lead to a significant increase in biogas production for cooked tuna viscera. When non-thermally pretreated raw viscera was tested, a large accumulation of volatile fatty acids and long chain fatty acids was observed, with levels reaching 21 and 6 g COD/L, respectively. On the other hand, anaerobic co-digestion of cooked tuna viscera with fat waste significantly enhanced methane production, achieving 0.87 g COD-CH4/g COD added. In contrast, co-digestion of cooked tuna viscera with dairy waste and sewage sludge resulted in notably lower yields of 0.36 and 0.46 g COD-CH4/g COD added, respectively. These results may be related to the C/N ratio, which was found to be within the optimal range for anaerobic digestion only in the tuna and fat waste co-digestion assay.


Assuntos
Biocombustíveis , Atum , Animais , Resíduos Sólidos , Metano , Esgotos , Digestão
2.
Waste Manag ; 68: 96-102, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28629710

RESUMO

Fish canning industries generate a significant amount of solid waste that can be digested anaerobically into volatile fatty acids (VFA). The aim of this research was to study the effect of various pHs, ranging from 5.0 to 10.0, and percentage of total solids on the anaerobic digestion of tuna waste into VFA, both in batch assays and continuous reactor. The production of VFA was affected by pH and was significantly higher under alkaline conditions. At pH 8.0, the VFA production reached 30,611mgCOD/L. The VFA mainly consisted of acetic, propionic, n-butyric and i-valeric acids. Acetic acid was the main product at all the pHs tested. In terms of total solids (TS) the best results were obtained with 2.5% total solids, reaching 0.73gCODVFA/gCODwaste. At higher TS concentrations (5 and 8% TS) lower yields were reached probably due to inhibition at high VFA concentration.


Assuntos
Ácidos Graxos Voláteis , Resíduos Industriais , Atum , Ácido Acético , Animais , Reatores Biológicos , Indústria Alimentícia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...